

(Protected by U.S. patent 7,403,677B1 and pending patents)

Product Description

The NS 1x2 Solid-State Variable Fiber Optic Splitter splits an incoming optical signal among two output optical fibers with an electrically variable power ratio. This is achieved using a patent pending non-mechanical configuration. When the electrical control signal is removed, the splitter latches to a pre-determined ratio with a standard version of 100:0. The device is bidirectional, transmitting light in both direction simultaneously. The all-solid-state crystal design eliminates the need for mechanical movement and organic materials. The NS Fiber Optic Splitter is designed to meet the most demanding switching requirements of ultra-high reliability, fast response time, and continuous operation.

The NS Series beam splitter is controlled by 5V TTL signals with a specially designed electronic driver having performance optimized for various repetition rate.

Performance Specifications

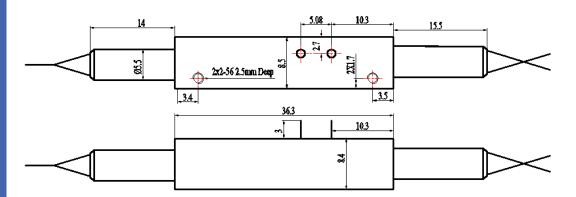
NS 1x2 Splitter			Min	Typical	Max	Unit
Central Wavelength			780		2000	nm
Insertion Loss ^[1] 1260~1650nm 960~1260nm 760~960nm			0.6	1	dB	
		960~1260nm		0.8	1.3	dB
		760~960nm		1	1.5	dB
Cross Talk at 100% splitter [2]		20	25	35	dB	
Splitting	Output 1		100~0			%
Variation	Output 2		0~100			%
	Туре			Continuou	S	
Response Time (Rise, Fall)					300	Ns
Durability			10 ¹⁴			cycles
Repetition Rate [3]			DC	5	100	kHz
Polarization Dependent Loss				0.1	0.35	dB
IL Temperature Dependency				0.25	0.5	dB
Polarization Mode Dispersion				0.1	0.2	Ps
Return Los	Return Loss			50	60	dB
Operating Temperature			-5		70	°C
Optical Power Handling [3]				300		mW
Storage Temperature			-40		85	°C
Package Dimension				65.8x8.5x8	.4	mm
[1] Excluding connectors.						

[2] Cross talk is measured at 100kHz, which may be degraded at the high repeat rate.

[3] Defined at 1310/1550nm. For the shorter wavelength, the handling power may be reduced.

Features

- Solid-State High Speed
- **Ultra-High Reliability**
- Low Insertion Loss
- Compact


Applications

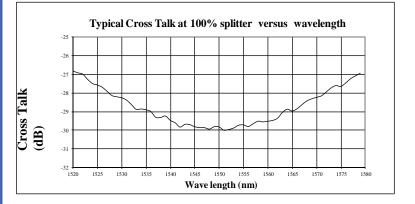
- **Optical Channel Blocking**
- System Monitoring
- Instrumentation

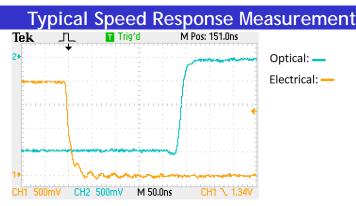
^[3] High repetition rate (up to 100 kHz) is available.

Mechanical Dimensions (mm)

Optical Splitter Driving Table

Optical Po	TTL Signal		
Port # 2 / Port #3	100% / 0%	L (< 0.8V)	
Port # 2 / Port #3	0% / 100%	H (> 4.5V)	


Driving Board Selection


Maximum Repetition Rate	Part Number (P/N)		
20kHz	NVDR-113235112		
100kHz	NVDR-112221112		

 * Note: For customers that prefer to design their owen driving circuit, they are responsible for the optical performance. For more technical information, please contact us.

Bandwidth Measurement

Ordering Information

NSSW-	3 0		1	1	1			
	Туре	Wavelength	Configuration	Package	Fiber Type		Fiber Length	Connector
	Splitter=30	1060=1 L Band=2 1310=3 1550=5 780=7 850=8 980=9			SMF28e=1 Special=0	Bare fiber=1 900um loose tube=3 Special=0	0.25m=1 0.5m=2 1.0 m=3 Special=0	None=1 FC/PC=2 FC/APC=3 SC/PC=4 SC/APC=5 ST/PC=6 LC/PC=7 LC Duplex=8 LC/APC=9 Special=0

15 Presidential Way, Woburn, MA 01801 Tel: (781)935-1200 Fax: (781)935-2040

www.agiltron.com

Q&A

Q: Does NS device drift over time and temperature?

A: NS devices are based on electro-optical crystal materials that can be influenced to a certain range by the environmental variations. The insertion loss of the device is only affected by the thermal expansion induced miss-alignment. For extended temperature operation, we offer special packaging to -40 -100 °C. The extinction or cross-talk value is affected by many EO material characters, including temperature-dependent birefringence, Vp, temperature gradient, optical power, at resonance points (electronic). However, the devices are designed to meet the minimum extinction/cross-talk stated on the spec sheets. It is important to avoid a temperature gradient along the device length.

Q: What is the actual applying voltage on the device? **A:** 100 to 400V depending on the version.

Q: How does the device work?

A: NS devices are not based on Mach-Zander Interference, rather birefringence crystal's nature beam displacement, in which the crystal creates two different paths for beams with different polarization orientations.

Q: What is the limitation for faster operation?

A: NS devices have been tested to have an optical response of about 300 ps. However, practical implementation limits the response speeds. It is possible to achieve a much faster response when operated at partial extinction value. We also offer resonance devices over 20MHz with low electrical power consumption.